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Abstract Advances in the glycobiology and immunology
fields have provided many insights into the role of
carbohydrate-protein interactions in the immune system.
We aim to present a comprehensive review of the effects
that some plant lectins exert as immunomodulatory agents,
showing that they are able to positively modify the immune
response to certain pathological conditions, such as cancer
and infections. The present review comprises four main
themes: (1) an overview of plant lectins that exert immuno-
modulatory effects and the mechanisms accounting for these
activities; (2) general characteristics of the immunomodula-
tory lectin ArtinM from the seeds of Artocarpus heterophyl-
lus; (3) activation of innate immunity cells by ArtinM and
consequent induction of Th1 immunity; (4) resistance con-
ferred by ArtinM administration in infections with intracel-
lular pathogens, such as Leishmania (Leishmania) major,
Leishmania (Leishmania) amazonensis, and Paracocci-
dioides brasiliensis. We believe that this review will be a
valuable resource for more studies in this relatively
neglected area of research, which has the potential to reveal
carbohydrate targets for novel prophylactic and therapeutic
strategies.
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Abbreviations
ArtinM Artocarpus heterophyllus lectin manose

binding
ML Mistletoe lectin
rML Recombinant mistletoe lectin
RIPs Type-2 ribosomes inactivating proteins
RNA Ribonucleic acid
NK Natural killer cells
IL-12 Interleukin – (12)
IFN-γ Interferon gamma
TLR Toll-like receptor
TNF-α Tumor necrosis factor-alpha
Th1 T helper 1
Th2 T helper 2
Th17 T helper 17
MHC II Major histocompatibility complex class II
KML Korean mistletoe lectin
PHA-E and
PHA-L

Phytohaemagglutinin

Con A Concanavalin A
PSA Pisum sativum agglutinin
WGA Wheat germ agglutinin
Cramoll Cratylia mollis lectin
BanLec Lectin from Musa paradisiacal
Conbr Lectin from Canavalia brasiliensis
DrosL Dioclea rostrata lectin
DvioL Dioclea violacea lectin
Dvirl Dioclea virgata lectin
Garlic Lectin from Alium sativum
PAA Pisum arvense agglutinin (lectin from

Pisum arvense)
PWM Pokeweed mitogen (lectin from Phytolacca

Americana)
SBA Soybean agglutinin
PNA Peanut agglutinin
AAL Aleuria aurantia lectin
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ScLL Synadenium carinatum lectin latex
UEA-1 Ulex europaeus agglutinin
CTL Cytotoxic T lymphocytes
NOD Non-obese diabetic mice
JRL Jacalin-related lectins
CRD Carbohydrate-recognition domain
HRP Horseradish peroxidase
rArtinM Recombinant ArtinM
NO Nitric oxide
PAMPs Pathogen-associated molecular patterns
TIR Toll/interleukin-1 receptor
MyD88 Myeloid differentiation primary response

gene 88
PCM Paracoccidioidomycosis
CFU Colony-forming units

Overview of immunomodulatory plant lectins

Lectins are carbohydrate-binding proteins of non-immune
origin. They are involved in various biological processes,

including cell–cell recognition, cell proliferation, cell migra-
tion, cell adhesion to the extracellular matrix, and host-
parasite interactions [1, 2]. Since the 1960s, plant lectins
have been extensively used as valuable tools in biomedical
research, because of their interactions with receptor-linked
glycans on cell surfaces may trigger cell signaling and
biochemical responses.

Several plant lectins exert immunomodulatory activi-
ties that are initiated by their interaction with glycan’s
moieties present over the surface of immune cells. Such
interaction may trigger signal transduction, to produce
certain cytokines (Table 1) and induce efficient immune
responses against tumors or microbial infections. Hence,
immunomodulatory lectins have potential pharmaceutical
applications or may help to identify sugar targets for
new therapeutic strategies.

The European mistletoe (Viscum album) contains the
most noticeable plant lectin endowed with immunomodula-
tory and antitumor activities. Mistletoe lectins (ML) type I,
II and III are a group of glycosylated, 56–64 kDa cytotoxic
proteins, which consist of two non-covalently associated
pairs of disulfide-linked A-B dimers and are considered to

Table 1 Some plant lectins that induce cytokines production

Lectin Source Cytokine Reference

ArtinM Artocarpus heterophyllus IL-12 and IL-10 (murine macrophages and dendritic cells) [26, 74, 75]

TNF-α (murine mast cells) [117]

IL-10/IFN-γ (murine spleen cells) [118]

Banlec Musa paradisiaca IFN-γ, IL-10, and IL-4 (murine spleen cells) [29]

ConA Canavalia ensiformis IFN-γ (murine spleen cells) [75]

IFN-γ and IL-2 (murine spleen cells) [25]

IL-5, IL-10, TNF-α, and IFN-γ (human peripheral blood mononuclear cells—PBMCs) [119]

Conbr Canavalia brasiliensis IL-5, IL-10, TNF-α, and IFN-γ (human PBMCs) [119]

IFN-γ (murine spleen cells) [75]

Cramoll Cratylia mollis IFN-γ (murine spleen cells) [28]

DrosL Dioclea rostrata IL-5, IL-10, TNF-α, and IFN-γ (human PBMCs) [119]

TNF-α and IL1-β (peritoneal cavity of rat) [120]

Dviol Dioclea violacea IL-5 (human PBMCs) [119]

Dvirl Dioclea virgata IL-5, IL-10, TNF-α, and IFN-γ (human PBMCs) [119]

ASA-I Alium sativum IFN-γ and IL-12 (murine spleen cells) [30]

KML Viscum album var. coloratum IL-12 (human dendritic cells) [121]

ML-I Viscum album IL-12 (human PBMCs) [11]

IL-15 (human neutrophils) [122]

IL-6, TNF-α, and IL-10 (human PBMCs) [123]

PAA Pisum arvense IFN-γ (murine spleen cells) [75]

PHA Phaseolus vulgaris IFN-γ and IL-2 (murine spleen cells) [25]

PSA Pisum sativum IFN-γ and IL-2 (murine spleen cells) [25]

PWM Phytolacca americana TNF-α, IL-12, and IL-6 (human PBMCs) [124]

ScLL Synadenium carinatum IFN-γ and IL-10 (murine bronchoalveolar lavage fluid-BALF) [33]

UEA-1 Ulex europaeus IL-2 and IFN-γ (mice spleen) [41]

WGA Triticum vulgaris IL-12 and IFN-γ (murine spleen cells) [25]
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be type-2 ribosome-inactivating protein (RIP). The B-chain
selectively binds to β-galactosides [3], whereas the A-chain
catalyzes hydrolysis of the N-glycosydic bond at adenine-
4324 in the eukaryotic 28S ribosomal RNA, thereby inhib-
iting the elongation step of protein biosynthesis [4]. ML-I
was identified as the active component of the Viscum album
extract and is applied as a complementary treatment of
cancer patients [5]. The ML-I B-chain binds to glycans on
the surface of cancer cells and allows A-chain entry into the
cytoplasm, where the latter chain is enzymatically active and
highly cytotoxic. In vitro and in vivo studies have shown
that the antitumor effects of ML-I are not only cytotoxic, but
also immunomodulatory [6], an activity that is fundamental to
its antitumor properties [7] (reviewed by Bocci, 1993 [8]). The
cloning of the mistletoe lectin gene and the separate heterol-
ogous expression of the single chains [9, 10] have pointed out
that the B-chain is responsible for the immunostimulatory
activity of ML-I, mainly manifested by augmented IL-12
production and increased cytokine-induced Natural Killer
Cells activation [11]. Comparison of the biological activities
of the recombinant Mistletoe lectins (rML) -heterodimer [10]
with those of some ML-I mutants [12] revealed a close corre-
lation between cytotoxicity, apoptosis, and the enzymatic
activity of the rML A-chain. Both the enzymatic activity
exerted by the A-chain and the carbohydrate binding activity
elicited by the B-chain are essential for the ML-I effect as an
anticancer agent. The first step in the biological action of ML
is to recognize and bind to specific ligands on the surface of
target cells. Determination of the sugar specificity of ML has
shown that this lectin preferentially binds to β-galactosides in
the oligosaccharides of glycoproteins [6, 13, 14]. ML-I has a
broad range of affinity for Galα- and Galβ-linked sequences,
revealing primary recognition of the terminal galactose unit
irrespective of the anomeric linkage [15, 16]. Recent studies
on the binding specificity of ML-I toward glycosphingolipids
and gangliosides have demonstrated its preferential binding to
terminally α2-6-sialylated neolacto-series gangliosides isolat-
ed from human granulocytes, whereas rML only marginally
binds to neutral gangliosides with terminal galactose moiety.
Therefore, ML-I is a type-2 RIP, specific to sialic acid rather
than galactose [17]. Indeed, gangliosides and glycoproteins
with terminal Neu5Acα2-6Galβ1-4GlcNAc residues are the
true and physiologically relevant targets of ML-I recognition
on the cell surface [18]. CD 75 s has glycans with terminalα2-
6-sialyl-lactosamine and is an important target for rML rec-
ognition. It is expressed predominantly on activated B-cell, T-
cell, and immature dendritic cells, and it is upregulated in
hematological cancers along with the cells of solid tumors.
As CD75s is overexpressed in solid tumors, these tumors have
been the focus of preclinical trials for the efficacy of rML
administration. More than 30 % of the patients were observed
to have stabilization in tumor progression associated with in-
creased plasma levels of IL-1β and IFN-γ in response to rML

administration. The high IFN-γ response indicates that rML
administration stimulates Th1 cells, which may mediate an
antitumor T-cell response (reviewed by Zwierzina et al. [19]).

Besides the European mistletoe, extracts of the Korean and
Chinese mistletoes (Viscum album coloratum and Viscum
articulatum, respectively) contain type-2 RIPs that bind D-
galactose [20, 21] and have high structural homology with
ML. Like ML-I, they are endowed with immunomodulatory
properties, as demonstrated by in vitro and in vivo studies. The
B-chain of the Korean mistletoe lectin (KML) accounts for its
immunomodulatory and antitumor activities. This is because
the KML B-chain promotes NK cells activation and produc-
tion of cytokines and inflammatory mediators by macrophages
[22, 23]. KML interaction with TLR-4 molecules is responsi-
ble for macrophage activation and cytokine production. Mac-
rophages stimulation with KLM results in upregulation of
TLR4 expression and enhanced TNF-α production, which is
reduced by anti-TLR4 specific antibodies or by assaying mac-
rophages from TLR-4 deficient mice [24]. The recombinant B-
chain of the Chinese mistletoe lectin (articulatin) stimulates
humanmononuclear cells to release TNF-α and IL-6 [21]. This
suggests that the B-chain acts as an immunomodulator, like
that of the European and Korean mistletoes.

Th1 immunity is induced by immunomodulatory plant
lectins. As a rule, the Th1 immune response, manifested by
high levels of IFN-γ production, occurs through an IL-12-
dependent mechanism. In vitro assays with 12 different plant
lectins have shown that six of the lectins induce murine spleen
cells to produce IL-12 and IFN-γ: Con A from Canavalia
ensiformis, which binds to α-linked mannose; PHA-E and
PHA-L from Phaseolus vulgaris, which respectively bind to
bisected bi- and tri-antennary complex N-glycans and highly
branched non-bisected complex N-glycans); PSA from Pisum
sativum, which binds to N-glycans containing α-linked man-
nose with an α-fucose residue linked to N-acetylchitobiose;
and WGA from Triticum vulgaris, which binds to neuraminic
acid and glycans containing terminal GlcNAc or GlcNAcβ1-
4GlucNAc [25]. Th1 cytokines production is induced by plant
lectins such as ArtinM from Artocarpus heterophyllus [26],
the Korean mistletoe lectin from Viscum album coloratum
[27], Cramoll from Cratylia mollis [28], BanLec from Musa
paradisiaca [29], and garlic lectin from Alium sativum [30].
Some of these lectins are able to induce Th1 cytokines upon
interaction with glycosylated receptors on macrophages and/
or dendritic cells, such as type 2 and 4 Toll-like receptors
(TLR2 and TLR4), respectively recognized by ArtinM [31]
and KML [24]. Several plant lectins may act as TLR agonists
[32]. The soybean (SBA), peanut agglutinin (PNA), ConA,
and PHA lectins (PHA-L and PHA-P) stimulate extracellular
TLRs (2/6, 4, and 5), whereas WGA is pan-active.

Plant lectins can also regulate Th2 immunity. For example,
mice receiving ScLL, a lectin from Synadenium carinatum
with affinity for β-galactoside-containing glycans, exhibited
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lower leukocyte trafficking and Th2 cytokine production [34].
ScLL also reduced the pathological sequelae associated with
the chronic inflammatory disease asthma in experimental ani-
mal models [33]. Th2 immunity can be induced by the lectin B-
chain of type-2 RIP from Ricinus communis, which binds to D-
galactose containing glycans, including many glycoproteins
expressed on the surface of enterocytes. This property motivat-
ed the genetic linking of the ricin B-chain with the coding
region of the proinsulin gene, expressed as a fusion protein in
E. coli [34] or in Solanum tuberosum (potato plant) [35]. Oral
administration of this recombinant fusion protein to prediabetic
NOD mice suppressed the auto-immune insulitis, associated
with the Th2 immune response, whereas administration of
insulin only did not interfere in the course of the disease [34].
The lectin interaction with glycans on the surface of enterocytes
favors systemic tolerance to the fused autoantigen. Fusion
proteins (immunomodulatory lectin/autoantigen) expressed in
the tissues of edible plants provide a conceivable strategy to
stimulate Th2 immunity and suppress autoimmunity.

Still regarding mucosal immunity, plant lectins that recog-
nize glycans on the surface of M cells may favor mucosal
immunity against orally administered antigens (reviewed by
Azizi and cols. 2010 [36]). M cells express a particular gly-
cosylation pattern on their surface, including L-fucose-
containing glycans [37], and transport a broad range of mate-
rials such as particulate antigens from the intestinal lumen to
the underlying lymphoid tissue of the mucosae, where local
and systemic potent immune response will be initiated. Ulex
europaeus agglutinin (UEA-1) recognizes α-L-fucose and
selectively binds to the surface of murine M cells. This prop-
erty explains why UEA-1 is the most studied lectin when
enhanced potency of oral or nasal particulate vaccines is the
ultimate target. UEA-1-poly-L-lysine coated on the surface of
microparticles encoding HIV-1 genes was able to bind to the
apical surface of M cells of mice immunized with these
particles [38]. Both mucosal and systemic antibody (IgA and
IgG) and envelope-specific CTLs responses were augmented
in mice immunized with poly-L-lysine conjugated to UEA1
and complexed to a plasmid encoding the HIV-1 envelope
[39]. Oral immunization of mice with killed whole Helico-
bacter pylori or Campylobacter jejuni conjugated to UEA-1
induced protective responses against live challenge [40]. In a
recent in vitro study, the hepatitis B surface antigen (HBsAg)
encapsulated in liposomes coupled with UEA-1 predominant-
ly targeted M-cells, in a sugar-dependent manner. In addition,
the lectinized liposomes induced high sIgA level in mucosal
secretions as well as high splenic levels of the IL-2 and IFN-γ
cytokines in orally immunized mice [41].

This overview provides basic information on plant lectins
that act as immunomodulators. Although the text is not
exhaustive, it shows that studies have mostly focused on
the effects that these lectins may exert on cancer. On the
other hand, our laboratory has extensively investigated the

effects that a plant lectin, named ArtinM, may have on the
course of experimental infections. This subject will be de-
tailed in the subsequent sections of this review.

ArtinM as an immunomodulatory lectin

Immunomodulatory lectins may play critical roles in the
response against infections. The immunobiological impor-
tance of carbohydrate recognition is patent in the literature.
However, the role exerted by this kind of interaction in
infectious diseases is much less appreciated than in other
pathological circumstances, like cancer. One reason for the
predominant investment in the study of protein-carbohydrate
interactions in cancer is related to the logical impact of
Hakomori’s work, where the aberrant glycosylation pattern
has been demonstrated in cancer cells thereby enhancing the
biological significance of lectins [42]. This author described
the aberrant glycosylation of cancer cells, rendering this
subject the favourite for studies on the biological roles of
lectins. The most relevant publications on this subject have
already been approached in the first section of this review. A
second reason for the focus on cancer may be the lack of
detailed information on biologically relevant assays to un-
derstand the role of carbohydrate-lectin interactions in the
immune system during infections.

Our research group is interested in the biological reper-
cussions of carbohydrate recognition by animal [43, 44],
pathogen [45–47], and plant lectins [48, 49], with particular
emphasis on plant lectins extracted from Artocarpus hetero-
phyllus (jackfruit) seeds. Our first study in this field in-
volved Jacalin. This Gal/GalNAc-binding lectin is able to
selectively bind to human IgA1 through recognition of the
O-glycan core, which is repeatedly found in the hinge region
of the α1 heavy chain [50, 51].

The structural characterization of Jacalin raised a new key in
lectin classification. The Jacalin-Related Lectins (JRL) were
initially featured as having a β-barrel three-dimensional struc-
ture. The JRL were subsequently identified to be having two
subfamilies of lectins, namely the Gal-specific JRLs and the
Man-specific JRLs. Gal-specific homologs of Jacalin exist in
the seeds of Artocarpus species [50] and Osage orange
(Maclura pomifera) [52]. Man-specific JRLs have been isolat-
ed from species belonging to a wide range of taxonomic
groups, including hedge bindweed (Calystegia sepium, family
Convolvulaceae) [53, 54], Jerusalem artichoke (Helianthus
tuberosus, family Asteraceae) [55], jackfruit (Artocarpus het-
erophyllus, family Moraceae) [49], rice (Oryza sativa, family
Gramineae) [56], banana (Musa acuminata, family Musaceae)
[57], Japanese chestnut (Castanea crenata, family Fagaceae)
[58], faveira (Parkia platycephala, family Fabaceae) [59], and
oilseed rape (Brassica napus, Brassicacea) [60]. Concomitant
occurrence of Gal- and Man-specific JLRs has been reported

644 Glycoconj J (2013) 30:641–657



for two plant species only. One is the bark of the black
mulberry tree (Morus nigra), which accumulates high concen-
trations of a Gal-specific JRL (called MornigaG) and a Man-
specific homolog (called MornigaM) [61]. The other Artocar-
pus heterophyllus, seeds of which contain Jacalin, that binds D-
galactose and ArtinM that binds to D-mannose. In this review,
we will focus on ArtinM.

ArtinM, also known as Artocarpin or KM+ [62], spe-
cifically recognizes the trisaccharide Manα1-3 [Manα1-6]
Man core of N-glycans. Interaction of ArtinM with some
N-glycans on the cell surface activates innate-immunity
cells, such as neutrophils, mast cells, dendritic cells, and
macrophages. In this way, ArtinM administration protects
against experimental infection with Leishmania spp and
Paracoccidioides brasiliensis. The resistance conferred by
ArtinM is attributed to recognition of N-glycans in the
ectodomain of Toll-like receptors (TLR) expressed on the
surface of innate-immunity cells, and the consequent in-
duction of interleukin 12 (IL-12) production and develop-
ment of the Th1 adaptive immune response (Table 2).

Here, we review the immunomodulatory effect of ArtinM
and themechanisms behind it.We describemurine experimental
models of infection and detail its potential therapeutic applica-
tions against certain intracellular pathogens.

ArtinM features

ArtinM is a homotetramer consisting of 13-kDa subunits. The
primary structure of ArtinM comprises a polypeptide chain of
149 amino acids that shares 52 % identity with the Jacalin
sequence [63]. The differences between Jacalin and ArtinM
are attributed to the absence of internal post-translational
cleavage in ArtinM, which preserves a short glycine-rich
linker sequence holding the regions analogous to the Jacalin
α- and β-chains together [63]. These noncovalently associat-
ed Jacalin chains are constituted of 133 and 20 residues,

respectively [64], which derive from a 17 kDa precursor
[65], whose cleavage does not occur in ArtinM molecule.

The three-dimensional structure of each monomer corre-
sponds to a β-barrel, with a β-prism folding (Fig. 1). Each unit
has a carbohydrate-recognition domain (CRD) that binds to D-
mannose. ArtinM is thus a tetramer with four CRDs [63]. The
structure of ArtinM complexes showed that CRD contains the
ligand mannotriose. So, the lectin possesses a deep-seated
binding site formed by three peptide loops (residues 14–17,
137–141, and 88–95). This binding site comprises two subsets,
the primary and secondary sites. Interactions at the primary
site, corresponding to two of the loops (residues 14–17 and
137–141), involves hydrogen bonds mainly. The secondary
site is composed by the third loop (residues 88–95) and estab-
lishes interactions that are primarily van der Waals’ in nature.

Fig. 1 Three-dimensional structure of the ArtinM monomer. Motifs
are distinguished by color, and the positions of the mannose-binding
site and linker region are indicated. (Authorized reproduction from
Rosa et al. [63])

Table 2 ArtinM biological properties

Cell type Glycotarget Triggered events Final effect Reference

Neutrophil N-Glycans on CXCR2 (on the
cell surface) and laminin (in
the extracellular matrix)

(i) Signal transduction via G protein; (ii)
tyrosine phosphorylation; (iii) increased
TLR2 expression; (iv) release of leukotriene
B4 and CXCL8; (v) shedding of L-selectin;
(vi) superoxide production; (vii) phagocytic
activity enhancement.

Cell activation and haptotaxis;
enhancement of effector functions

[125, 126]

[49]

[127, 128]

Mast cell N-Glycans on Fcε receptor (i) Cell degranulation; (ii) TNF-α release;
(iii) mast cell recruitment from bone marrow

Cell recruitment and degranulation;
contributes to neutrophil attraction

[117, 129]

Macrophage N-Glycans on TLR2 (i) Signal transduction via MyD88; (ii) NF-kB
activation; (iii) IL-12 production

Th1 immunity [26, 31]

[74]

Dendritic cell N-Glycans on TLR2 (i) Increased MHCII, CD80, and CD86
expression; (ii) IL-12 production

Cell maturation and Th1 immunity [75]
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Mannotriose interacts through the three mannopyranosyl resi-
dues in its complex with the lectin; mannopentose interacts
with the protein via at least three of the five mannose residues.
The complexes provide a structural explanation for the carbo-
hydrate specificities of ArtinM. A detailed comparison with the
sugar complexes of Heltuba lectin, another mannose-specific
JRL with known three-dimensional structure in the sugar-
bound form, has established that the sugar-binding loop con-
stituting the secondary site has a role in the different specific-
ities observed at the oligosaccharide level. This loop is four
residues longer in the ArtinM CRD than in the Heltuba CRD,
so variation in the loop length is a strategy to generate carbo-
hydrate specificity [66].

Molecular modeling and crystallization studies have shown
that structural differences account for the distinct
carbohydrate-binding specificities between ArtinM and Jaca-
lin [63, 66, 67], especially with respect to the recognition of D-
mannose, but not D-galactose, by ArtinM. The binding affinity
of ArtinM for the glycoprotein horseradish peroxidase (HRP)
is 1633-fold higher than that for the monosaccharide D-man-
nose. This is because ArtinM interacts with the trimannoside
core of the HRP N-glycan, which is reinforced by binding to
the mannosyl end of the branched oligosaccharide. The su-
perposition of the mannosyl end with the trisaccharide in the
complex leads to severe steric clashes involving the xylose
residue and loops 86–95 of the lectin. This results in eight
hydrogen bonds and increased binding energy [66].

Although xylose appears to be responsible for the increase in
binding energy, it adorns plant N-glycans, as mentioned for
HRP, but not mammalian N-glycans [68]. The saccharides that
can be coupled to the core of mammalian N-glycans are
GlcNAc or Fuc and both are able to establish many van der
Waals contacts with loop residues 87–93 of ArtinM [66].
Glycoarray analysis of ArtinM specificity (unpublished data)
revealed that subsets of complex-type bi-antennary N-glycans
containing Manα1-3(Manα1-6)Manβ1-4GlcNAcβ1-
4GlcNAcβ are well recognized by the lectin. The branch
attached toManα1-6 contributes to ArtinM recognition, where-
as Manα1-3 elongation reduces lectin binding. A previous
study of ArtinM specificity evidenced enhanced recognition
of α1-6Man-extended compared with α1-3Man-extended
mono-antennary glycans [69]. This unusual binding mecha-
nism accounts for the selectivity of ArtinM binding to certain
N-glycans, such as those linked to some protein cell receptors.

Recombinant ArtinM

ArtinM has potential pharmaceutical applications. However,
evaluation of these uses has been limited by the lectin
paucity in the extract of A. heterophyllus seeds (less than
0.5 % of the total protein content) [49]. To further explore
the properties of ArtinM, its cDNA has been cloned and

heterologously expressed in Saccharomyces cerevisiae and
Escherichia coli [70].

Glycoarray analysis of ArtinM has shown that the native
(ArtinM) and recombinant (rArtinM) forms display the same
specificity for Manα1-3(Manα1-6)Manβ1-4 in the context of
N-Glycans. Electrogravimetric analysis, allied to a simple ki-
netic model for HRP binding to the native and recombinant
forms of ArtinM, established equivalence for the kinetics of
binding/association affinity of the ligand sites [71]. Therefore,
ArtinM CRD is preserved in rArtinM, thus facilitating study of
its biological properties.

rArtinM reproduces the biological properties of ArtinM,
including neutrophil chemotaxis and mast cell degranulation
(unpublished data). IL-12 production also occurs when mu-
rine macrophages [72] are treated with native or recombi-
nant forms of ArtinM. In addition, the recombinant form is
able to induce the release of other inflammatory products,
such as TNF-α and NO, at the same level as the native form
(unpublished data). Besides the in vitro analysis, the ArtinM
immunomodulatory effect was reproduced by rArtinM in an
assay involving a model of systemic fungal disease caused
by Paracoccidioides brasiliensis. Administration of ArtinM
or rArtinM to mice before or after fungal inoculation in-
duced Th1 immunity, as attested by high TNF-α and IL-12
levels as well as low IL-4 concentrations. Compared with
untreated controls, ArtinM- or rArtinM-treated animals
exhibited minor pulmonary lesions and fungal burden [31].

ArtinM targets TLR2 N-glycans to induce IL-12
production

The first indication that ArtinM has an immunomodulatory
property was its ability to induce IL-12 production by mu-
rine macrophages. This ability depends on the lectin con-
centration and CRD, and IL-12 production is selectively
inhibited by D-mannose [26].

IL-12, a 70-kDa heterodimeric cytokine, is important for
the activation of the type-1 immune response. A bioactive
IL-12p70 form comprises two disulfide-linked subunits: a
heavy 40-kDa chain (p40) and a light 35-kDa chain (p35).
Macrophages and dendritic cells are the major producers of
this cytokine, which is released as a biologically inactive
(IL-12p40) and also as a biologically active form (IL-12p70)
[73]. IL-12 acts on T lymphocytes and natural killer (NK)
cells, and it induces IFN-γ production (Figs. 2 and 5). This
hallmark Th1 cytokine functions on T cell proliferation and
enhances the cytotoxic activity of macrophages.

By inducing IL-12 production, ArtinM promotes a pro-
tective Th1-type response against intracellular pathogens
[26, 74, 75]. Reversion of its beneficial effect on IL-12
genetically deficient mice demonstrated the crucial role of
IL-12 in the resistance conferred by ArtinM [74]. IL-12

646 Glycoconj J (2013) 30:641–657



production by phagocytes is generally initiated by interac-
tion of cell-surface TLR with pathogen-associated molecu-
lar patterns (PAMPs).

Toll-like receptors play a key part in the initiation of innate
immune responses against pathogens in mammals. Moreover,
they recognize a variety of PAMPs from bacteria, viruses, and
fungi [76]. To date, more than a dozen different TLRs have
been identified. TLRs 1–9 are conserved in humans and mice,
TLR10 is selectively expressed in humans, and TLR11 is
functional in mice [77]. TLRs are type-I transmembrane pro-
teins. Their ectodomains contain leucine-rich repeats that
mediate PAMP recognition. Downstream signal transduction
requires their intracellular Toll–IL-1 receptor (TIR) domains.
Studies on mice deficient in different TLRs have demonstrat-
ed that each TLR has a distinct function in terms of PAMP
recognition and immune-response induction [78]. This find-
ing opens new frontiers in the development of therapeutic
strategies, as attested by the use of a TLR agonist (Box 1).

Amino acid sequencing analysis of all of the TLRs
identified to date has revealed the presence of potential
N-linked glycosylation sites. Several lines of evidence
indicate that oligosaccharides attached to TLRs play

important roles in PAMP recognition and in the forma-
tion of a functional receptor complex on the cell surface
[79–83]. The ectodomain of human TLR2 contains N-
glycans linked to residues Asn114, Asn199, Asn414,
and Asn442; the glycan at Asn442 contributes to effi-
cient secretion of the TLR2 ectodomain [80] and PAMP
recognition [84].

We have established that ArtinM-induced IL-12 produc-
tion occurs via recognition of TLR2 N-glycans (unpublished
data) (Fig. 2), but not TLR4 N-glycans; only macrophages
from TLR2-deficient mice failed to produce IL-12 in re-
sponse to ArtinM stimulus [74]. Notably, the ability of
ArtinM to induce IL-12 production in wild type (WT) cells
was selectively blocked by D-mannose. A gene report assay
using TLR2-transfected cells demonstrated direct interac-
tion of ArtinM with TLR2 (unpublished data). The fact that
the TLR2 ectodomain contains 4 N-glycans further
evidenced TLR2 targeting by ArtinM. We are currently
working to identify which glycan(s) is (are) targeted by
ArtinM using TLR2 mutants for the ectodomain glycosyla-
tion sites (generated in Dr. Nicholas Gay’s laboratory—
Department of Biochemistry, University of Cambridge).

ArtinM signaling induces IL-12 production and ArtinM
affects dendritic cell (DCs) maturation

The TLR signaling triggered by PAMP recognition fre-
quently involves the adaptor molecule and the myeloid
differentiation primary response gene MyD88, and this sig-
naling induces nuclear factor-κB-dependent cytokine pro-
duction [85, 86]. The signaling triggered by interaction of
TLR2 glycans with ArtinM, which accounts for IL-12 in-
duction (Figs. 2 and 5), also requires the MyD88 adaptor
molecule [74]. Indeed, macrophages from animals deficient
in MyD88 failed to produce IL-12 under ArtinM stimula-
tion. Detection of luciferase activity following ArtinM stim-
ulation confirmed NF-κB activation in a gene report assay
using HEK293 cells transfected with TLR2 and NF-κB
luciferase (manuscript in preparation).

ArtinM also stimulates dendritic cells to produce IL-12
via TLR2 recognition (unpublished data). Indeed, ArtinM
induces maturation of bone marrow-derived dendritic cells
(BMDC), as manifested by a higher expression of MHC
class II, CD80, and CD86 molecules, which characterizes a
profile of mature DCs, capable of priming T cells (Table 2).

Investigation of ArtinM-induced Th1 immunity
in the murine model of Leishmania infection

Leishmaniasis is a complex of diseases caused by protozoan
parasites of the genus Leishmania, with high impact on

Fig. 2 Immunological repercussions of ArtinM binding to antigen-
presenting cells (APCs). The interaction of ArtinM with TLR2 N-
glycans on APCs promotes IL-12 production. This cytokine induces
increased IFN-γ production by natural killer (NK) and/or T cells,
shaping a Th1 immune response. IFN-γ increases the microbicidal
activity of macrophages. ArtinM stimulation of infected macrophages
further increases the release of IL-12, constituting an amplification
looping of Th1 immunity against intracellular pathogens
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public health in many regions worldwide. Leishmania mul-
tiplies within mononuclear phagocytic system cells.
Depending upon the parasite species and host immune re-
sponse, the infection causes a wide spectrum of clinical
manifestations, including self-healing single-skin, mucosal,
and diffuse cutaneous lesions. The disease also manifests as
a severe systemic infection called visceral leishmaniasis,
with liver and spleen enlargement, cachexia, and persistent
fever (reviewed by Brodskyn et al. [87]). The clinical signs
have been attributed to the ability of the parasite to spread to
lymphatic and hematogenic pathways [88, 89]. Parasite
persistence in the tissues accounts for the damage [90].

Severity of non-healing cutaneous lesions, persistence of
parasites at the inoculation site, and scattering by organs

such as the liver and spleen [91] constitute signs of suscep-
tibility to leishmaniasis, which is associated with the
immune-response profile the host develops. This relation-
ship has been extensively investigated in murine models of
leishmaniasis, which showed different degrees of suscepti-
bility depending on the infected mouse strain. In this con-
text, BALB/c mice are susceptible to L. major infection,
while C57BL/6 mice are resistant and able to mount an
effective immune response against the parasite [92]. Infec-
tion of susceptible BALB/c mice by L. major is an estab-
lished leishmaniasis model and has contributed to
characterization of the dichotomy of the T helper 1 (Th1)
and T helper 2 (Th2) profile responses [93, 94], showing
that resistance and susceptibility are caused by the

There are consistent reasons for targeting TLR as an alternative therapeutic agent. 

Currently, imiquimod is the most frequently used TLR ligand in clinical practice. It 

has been approved for the treatment of external genital warts and (pre-)cancerous skin 

lesions, such as actinic keratoses and superficial basal cell carcinoma. Upon topical 

application, this TLR7 agonist induces increased IFN- -12, and TNF-

production, shaping a Th1-prone immune response. Imiquimod enforces the 

recruitment of myeloid and plasmacytoid dendritic cells and cytotoxic T cells, and it 

enhances the ability of antigen-presenting cells to induce reactive T cells. These 

multifaceted actions, which comprise proapoptotic, antifibrotic, antiangiogenic, and 

antiaging effects, provide efficacy to the treatment of various other skin diseases 

(reviewed by Novak et al. [130]). In contrast to new adjuvants (comprising complex 

mixtures of emulsions, detergents, and immunostimulatory components), the 

interaction of  miquimod with TLR-7 provides a well-defined cellular target and 

signaling, which can rationally enhance the adjuvant potency of vaccines; e.g., 

against Plasmodium falciparum [131]or the treatment of cutaneous leishmaniasis 

[132,133]. Other new TLR-agonists, designed through variations of structures and 

synthetic stimulatory motifs, can be used to modulate immunity and develop novel 

drugs that are quite distinct from natural ligands. The ability to modulate immune 

responses in a desired and optimal fashion may facilitate the targeting of a broad 

range of diseases, including cancer, asthma, allergies, and infections. Viral and 

synthetic ssRNAs act as agonists of TLR7 and TLR8. Certain nucleoside analogs, 

such as loxoribine, 7-thia-8-oxo-guanosine, and 7-deazaguanosine, activate TLR7. 

Imidazoquinoline-based compounds act as agonists of TLR7 and TLR8, and they

interact with adenosine-receptor signaling pathways to induce immune responses. 

Bacterial and synthetic DNA containing unmethylated CpG motifs act as agonists of 

TLR9 and induce Th1-type immune-response profiles (reviewed by Agrawal and 

Kandimalla [134]). Monophosphoryl lipid A (MPL) acts as an agonist of TRL4 and, 

in combination with CpG, induces an effective T cell response against cutaneous 

leishmaniasis [135].

Box 1. TLR agonist
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appearance of parasite-specific CD4+ Th1 or CD4+ Th2
cells, respectively. Infected BALB/c mice display strong
IL-4 and IL-10 mRNA expression and very low IFN-γ
mRNA expression, whereas infected C57BL/6 animals ex-
hibit high IFN-γ and IL-10 mRNA levels [95]. Thus, during
the early stages of infection, resistance is associated with
IFN-γ production, whereas susceptibility is linked to IL-4
production [96].

We have demonstrated that ArtinM administration elicits
IFN-γ secretion by murine spleen cells. We have taken
advantage of the well-established model of susceptibility
of BALB/c mice to L. major infection and determined
whether the IL-12 production induced by ArtinM could
reverse the Th2 response that is itself responsible for severe
manifestations of the infection. Compared with untreated
mice, mice pre-treated with ArtinM (3 doses of 0.5 μg) in
combination, or not, with soluble L. major antigens (SLA)
and challenged with 1×106 promastigotes of L. major had
smaller lesions (Fig. 3). Association of ArtinM-pretreatment
with anti-IL-12 administration blocked the beneficial effect
of ArtinM on the foot lesion. This reinforced that ArtinM
acts by changing the pattern of cytokine production, as
confirmed by the concentration of cytokines produced by
the lymph node cells draining the site of parasite inoculation
in mice. Cells from SLA-injected animals released high IL-4
and low IFN-γ concentrations. In contrast, cells from ani-
mals injected with Artin-M produced lower IL-4 and higher
IFN-γ concentrations. Thus, Artin-M stimulates a drive
toward Th1 response in vivo, contrary to the IL-4-driven,
polarized Th2 cell response found for the model of a non-
healing L. major infection in BALB/c mice.

BALB/c mice immunized with 0.5 μg of ArtinM and
challenged with L. amazonensis (1×106 infective-stage pro-
mastigotes) exhibited significant reduction in the number of

parasites (48 %), and this decrease was even greater (80 %)
when ArtinM was associated with SLA [75]. IFN-γ produc-
tion significantly increased when splenic cells from BALB/c
mice were stimulated with ArtinM in vitro. Hence, ArtinM
was able to control L. amazonensis infection, probably by
acting upon initial immune response.

The murine models of Leishmania infection provide strong
evidence for the immunomodulatory effect of ArtinM toward
a Th1 profile. They also indicate the importance of induced
IL-12 production for the protection conferred by ArtinM
against Leishmania spp, reinforcing the in vitro results de-
scribed in section “ArtinM targets TLR2 N-glycans to induce
IL-12 production”.

ArtinM-induced Th1 immunity confers protection
against a fungal disease

Our research on the effect of ArtinM on experimental
leishmaniasis motivated us to evaluate how this lectin
interferes with the course of other infection for which
host resistance depends on the Th1 response. We chose
to investigate the experimental model of paracoccidioi-
domycosis (PCM), which is the most frequent human
systemic mycosis in Latin America, and for which a
favorable outcome is associated with early and sustained
IFN-γ production.

PCM is caused by the dimorphic fungus Paracocci-
dioides brasiliensis and is characterized by lesions in
the lungs, lymph nodes, skin, and mucous membranes
(oral, nasal, and gastrointestinal) [97]. Infection occurs
after inhalation of airborne conidia produced by the
mycelial form of the fungus. In the lungs, at 37 °C,
the inhaled forms are transformed into yeasts, which
cause pulmonary granulomatous lesions and can dissem-
inate to many organ systems via the bloodstream and/or
lymphatic system [98, 99]. Depending on the host-
specific immunity and virulence of the infecting agent,
the infection results in a wide spectrum of clinical
manifestations. These range from a few localized forms
to systemic infection of multiple organs and, eventually,
severe and even fatal disease [100].

Although the mechanisms involved in resistance to P.
brasiliensis are still poorly understood, there are clinical and
experimental evidences that the cell-mediated immune re-
sponse plays an important role in host defense against PCM
[101–103]. The Th1 immune response exerts a singular role in
the asymptomatic form of PCM, while a Th2 pattern is asso-
ciated with the development of severe disease [104–106].
Resistance and susceptibility to fungal infections have been
studied in murine models of infection, which simulate the
human mycosis. These models have furnished details of the
immune response mechanisms involved in PCM. Resistant

Fig. 3 ArtinM administration avoids the footpad lesion caused by L.
major inoculation in BALB/c mice. Mice were administered with
ArtinM (10 μg/mL) or vehicle (PBS) and infected (in the hind foot-
pads) with 1×106 metacyclic promastigotes of L. major. The evolution
of the lesion was assessed by measuring the footpad thickness, during
an 8-week period. Modified of Panunto-Castelo et al. [26]
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mice produce early and sustained IFN-γ and IL-2 levels,
whereas susceptible mice produce low IFN-γ but significant
IL-5 and IL-10 levels [107, 108]. IFN-γ activates TNF-α
secretion and fungal replication inhibition by infected macro-
phages. TNF-α, in turn, is required for macrophage accumu-
lation and granuloma formation in the lungs of P. brasiliensis-
infected mice. Infected mice treated with anti-IFN-γ showed
exacerbated pulmonary infection and early fungal dissemina-
tion [109]. The essential role of these cytokines has been
further demonstrated by using mice genetically deficient in
either the IFN-γ or TNF-α receptor [109, 110]. The functions
of cytokines accounting for macrophage activation have been
consistently documented and are necessary for fungal killing
[111–113].

To investigate the interference of ArtinM administra-
tion in PCM, our group used an experimental model in
which 1×106 yeast cells of a virulent P. brasiliensis
isolate were intravenously inoculated into BALB/c mice.
We evaluated infection severity by the intensity of pul-
monary fungal burden and lesions, as well as the exten-
sion of fungal dissemination. A screening of regimens of
ArtinM administration established that an effective ther-
apeutic protocol consisted of a single subcutaneous in-
jection of ArtinM, 10 days after infection, whereas
administration of two subcutaneous injections of ArtinM,
on day 10 and day 3 before infection, afforded the best
prophylaxis. The therapeutic and prophylactic forms of
ArtinM administration were associated with an important
decrease in the colony-forming units (CFU) recovered
from the mice lungs on day 30 after infection. The lungs
presented only mild infiltration of mononuclear cells,
contrasting with the lungs of untreated mice, which had
multiple sites of focal and confluent epithelioid granulo-
mas, with lymphomonocytic halos circumscribing a high
number of viable and non-viable yeast cells (Fig. 4). On
day 60 post infection, the untreated mice exhibited dis-
seminated infection, as indicated by the confluent epithe-
lioid granulomas in their liver and spleen. In contrast,

infected mice administered with prophylactic or thera-
peutic ArtinM exhibited no granulomas or yeast cells in
the pulmonary sections and had a well-preserved bron-
choalveolar structure along with expected no fungal dis-
semination to the liver or spleen. Therefore, ArtinM
exerted a beneficial effect on the severity of P. brasilien-
sis infection [31, 74, 114].

The advantageous effect of ArtinM administration corre-
lates with an adequate milieu of pulmonary mediators. The
lung homogenates from mice infected with P. brasiliensis
and administered with prophylactic or therapeutic ArtinM
showed higher levels of the pro-inflammatory cytokines IL-
12 and TNF-α, and also of NO. In addition, lower IL-4 and
higher IFN-γ concentrations were stably produced during
the disease course in ArtinM-treated mice, whilst high IL-4
and low IFN-γ concentrations were detected in untreated
control mice. As in the case of the Leishmania infection
model, we concluded that a drive toward a Th1 response is
stimulated in vivo by ArtinM. Besides that, we verified
stable IL-10 production in the ArtinM-treated mice. There-
fore, ArtinM administration correlates with the establish-
ment of Th1 immunity, balanced by the presence of an
anti-inflammatory cytokine (Fig. 5). Interestingly, we also
observed, but did not report, IL-10 production in the BALB/
c mice infected with L. major and administered with
ArtinM.

We have investigated the importance of IL-12 for the
beneficial effects of ArtinM on experimental PCM. IL-12
knockout (KO) mice inoculated with the fungus and
treated with ArtinM were not protected against the in-
fection, showing the crucial nature of IL-12 is for the
immunomodulatory effect exerted by ArtinM. We pro-
pose that ArtinM interferes with the outcome of P. bra-
siliensis infection, by modulating the host immunity
against the fungus according to the following events:
recognition of TLR2 glycans by the lectin; induction of
IL-12 production (Fig. 2); generation of a Th1-balanced
immunity; and protection against P. brasiliensis.

Fig. 4 Protective effect of ArtinM against P. brasiliensis infection.
Untreated and ArtinM (10 μg/mL) treated BALB/c mice were intra-
venously infected with 1×106 virulent P. brasiliensis yeast cells. At the
week 2 postinfection, the pulmonary tissue from untreated mice

presented large granulomas surrounding a great number of yeast cells
(a), while ArtinM treated mice showed small areas of mononuclear
cells infiltration, in which few yeast cells were seen (b)
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The parallel utilization of recombinant ArtinM to treat the
P. brasiliensis-infected mice provided evidence that the
administration of ArtinM or rArtinM has an equally protec-
tive effect against the infection. [31].

In conclusion, ArtinM exerts a protective effect against
experimental infection with P. brasiliensis, leading to a Th1-
biased immune response with a direct beneficial effect on the
severity of lung lesions. The mechanism of protection
involves induction of endogenous IL-12, in a process depen-
dent on the MyD88/TLR2 signaling pathway. The detection
of IL-10 production in ArtinM-treated animals revealed that
the induced Th1-prone immune response is regulated to pre-
vent systemic immune pathology, as indicated by the absence
of exacerbated inflammatory lesions in animals administered
with ArtinM (Fig. 5). The identification of the cell source of
IL-10 is under investigation, as part of a study of ArtinM
pleiotropic activities (Box 2) [115, 116].

The new perspectives offered by ArtinM in the devel-
opment of antifungal therapy has been reviewed recently
[114].

Additional interactions of ArtinM with immune cells
account for its pleiotropic effects

Pleiotropism refers to the ability of certain mediators, such
as cytokines, to act on different cell types. It is an important
property shared by all cytokines, and accounts for their
ability to act on innate and also adaptive immunity. Various
examples illustrate the pleiotropic activities of cytokines.
IL-12 enhances NK cell cytotoxicity in innate immunity
and induces Th1 cell differentiation in adaptive immunity.
IFN-γ, in turn, activates macrophages in the innate and also
in the adaptative cell-mediated immune response. Moreover,
it increases expression of MHC molecules and enhances
antigen processing and presentation. IL-10 (which is pro-
duced by macrophages, some T helper cells, and mast cells)
inhibits activated macrophages and dendritic cells,

Several lines of evidence indicate that ArtinM pleiotropism is responsible for its 

immunomodulatory effect against infection by intracellular pathogens such as P. 

brasiliensis. The studies of Loures and coworkers [136] on the role of TLR2 in 

pulmonary PCM give a rational basis to the hypothesis that ArtinM, as a TLR2 agonist, 

can negatively control Th17 immunity and prevent tissue injury. This suggests the 

existence of an additional mechanism for the beneficial effect of ArtinM 

administration. However, a very recent study revealed that ArtinM induced Th17 

immunity in a model of Candida albicans infection [137]. Further studies on the effect 

of ArtinM on Th17 immunity are necessary.

Box 2. ArtinM exerts positive or negative control of Th17 immunity.

Fig. 5 Pleiotropic activity of ArtinM allows the construction of a Th1
immunity regulated by IL-10. ArtinM administration leads to the
production of Th1 cytokines and IL-10, whereas no IL-4 is detected.
The cell responding to ArtinM stimulus through IL-10 production has
not yet been identified. IL-10 is assumed to counterbalance the inflam-
mation associated with Th1 immunity, thereby preventing tissue injury
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decreases inflammation by inhibiting Th1 cells, and inhibits
IL-12 release by macrophages. Although pleiotropism
allows cytokines to mediate diverse effects, numerous un-
desirable side effects limit their therapeutic use. The biolog-
ical characterization of ArtinM indicates its pleiotropism. As
already mentioned, ArtinM activates a variety of cells by
interacting with glycosylated receptors on their surface. In
addition to the interaction with TLR2 glycans in macro-
phages and dendritic cells (which is responsible for IL12
production and induction of Th1 immunity), ArtinM acti-
vates neutrophils via recognition of N-glycans linked to
receptors such as CXCR2 and TLR2. This induces cell
migration, release of inflammatory mediators, and enhance-
ment of effector functions. ArtinM also targets glycosylated
receptors on the surface of mast cells, which leads to cell
degranulation; release of cytokines such as TNF-α, IL-10,
and IL-8; and recruitment and differentiation of mast cell
precursors from the bone marrow. By analogy with the
limitations found for the therapeutic use of cytokines, we
are currently evaluating whether the pleiotropic effects of
ArtinM impair its immunomodulatory activity. Preliminary
results suggest that the pleiotropic effects of ArtinM are not
harmful in our models of infection; in fact, neutrophil acti-
vation induced by ArtinM appears to favor elimination of
intracellular pathogens without causing exacerbated inflam-
mation. We hypothesize that the potential pro-inflammatory
effects of ArtinM are counterbalanced by its ability to in-
duce IL-10 production, and we are currently investigating
the cell source of this cytokine.

Conclusions and future directions

In this review, we have focused on the immunomodulatory
properties of ArtinM. We have provided a structural basis of
sugar recognition by ArtinM and applied our knowledge of
lectin specificity to explain its interaction with glycosylated
receptors on the cell surface. We specifically studied the inter-
action of ArtinM with TLR2 N-glycans on the surface of
macrophages and dendritic cells, because this interaction is
primarily responsible for the immunomodulatory activity of
this lectin. This activity is characterized by induction of IL-12
production, development of Th1 immunity, and ability to con-
fer protection against murine infectionswith intracellular patho-
gens, such as Leishmania spp and P. brasiliensis. We compared
the immunomodulatory activity of ArtinM with those triggered
by TLR agonists and considered the former lectin to be advan-
tageous, because of its pleiotropic feature. The presence of
multiple glycan targets of ArtinM on the surface of different
cells (including neutrophils, macrophages, dendritic cells, and
mast cells) appears to favor efficient immunomodulation. How-
ever, many questions remain to be answered. We are currently
working on: (i) determining the specificity of ArtinM toward

complex glycans; (ii) identifying cell-surface receptors through
which N-glycans are recognized by ArtinM; (iii) extending the
range of animal models used to assay the effects of ArtinM
immunomodulatory activity; (iv) evaluating ArtinM immuno-
modulatory activity during the early phases of acute infections;
and (v) understanding the mechanisms responsible for the
ArtinM immunomodulatory activity.
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